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with Nonuniform Density 
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An Ansatz developed by Maharaj and Maartens is used to obtain solutions of 
Einstein's field equations for static anisotropic fluid spheres with nonuniform 
density. These solutions are matched with the Schwarzschild exterior solution. 

1. INTRODUCTION 

The study of static anisotropic fluid spheres is important for relativistic 
astrophysics (Bowers and Liang, 1974). Several solutions have been found 
using various Ans/itze (Casenza et al., 1981; Herrera and Ponce de Leon, 
1985; Ponce de Leon, 1987a,b; Bayin, 1982; Stewart, 1982). Singh and 
Singh (1985) developed a method to obtain a class of solutions for charged 
anisotropic fluid spheres. Maharaj and Maartens (1986) developed an 
Ansatz in which the energy density and radial pressure need to be specified. 
An alternative approach involves choosing the "degree of anisotropy," i.e., 
specifying the magnitude of the stress tensor (Casenza et al., 1981). Maharaj 
and Maartens (1989) found incompressible (constant energy density) solu- 
tions. Maharaj and Maartens (1990) used the same Ansatz and obtained a 
class of static anisotropic spheres with nonuniform energy density, they 
assumed the energy density in the form used by Durgapal and Bannerji 
(1983) and Finch and Skea (1989) for isotropic spheres. They matched their 
solution with the Schwarzschild exterior solution. 

In the present work we choose the energy density in the form used by 
Kuchowicz (1966), Mehra (1966), and Knutsen (1990) for isotropic spheres. 
The matching and physical properties of these solutions are discussed. 
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2. FIELD EQUATIONS 

We consider the metric for the interior of the static spherically fluid 
sphere in the form 

ds2=e~" dr2 + r 2 dO2 + r 2 sin 2 0 d ~  2 - e  v d t  2 (2.1) 

where ~ and v are functions of radial coordinate r alone and x ; -  (r, 0, ~b, t). 
The energy-momentum tensor is of the form 

T o = pu~u j +ph ~ + 7r ~ (2.2) 

where d=e-V/26~, p is the energy density, p is the isotropic (kinetic) 
pressure, h~176 j is the projection tensor, and ~r ~ is the anisotropic 
pressure (stress) tensor. 

The invariance of d and T o with respect to the Killing vectors of (2.1) 
implies that the dynamical quantities constructed from them are invariant. 
This implies that the dynamical quantities assume the form (Maharaj and 
Maartens, 1986) 

p=p(r )  (2.3) 

p =p(r) (2.4) 

Jr ~ vf3 s(r)( CiC j -  �89 ~ (2.5) 

where C ~= e-Z/2d;] is a unit radial vector orthogonal to u; and Is(r)l is the 
magnitude of the stress tensor. For anisotropic fluid spheres, S#0.  When 
S=0,  pr=p• we have an isotropic sphere. Using equations (2.1)-(2.5), we 
find that the Einstein field equations become 

l _ e - X ( Z ' _ l ~ =  
r 2 \ r r2, ] p (2.6) 

_ i v '  1"~ 1 _  2s 
e ~ r + - / ) - - ~ - p + - ~  (2.7) 

I-Iv" v '2 ~l,'v' v ' - ~  "~-] ' S 

e~Lt~-+  4 - ~ - 4  2r ) J : ' - ~  (2.8) 

where p + 2s/x/-3=_-p, is the radial pressure and p-s/x/r3 =P_L is the tangential 
pressure. The momentum conservation equation can be written in the form 

, 4x/~ 
(p +p,) v' + 2p, + - -  s = 0 (2.9) 

r 

Here primes denote differentiation with respect to r. 
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Using the mass function (Stephani, 1982) 

m(r) - �89 x2p(x)  dx  (2.10) 

and the conservation equation (2.9), we find that the field equations 
(2.6)-(2.8) reduce to 

2m 
e -~=l  - -  (2.11) 

r 

r ( r -  2m) v' =prr 3 + 2m (2.12) 

2m' ~ 4 
- T + p , / v ' +  2p' (p• -pr)  (2.133 

r -  / r 

Here we have a set of three equations (2.11)-(2.13) in the five variables m 
(i.e., p), pr, p• v, and ~. For a solution we must specify two physically 
reasonable functional relations among the five variables. We choose suitable 
forms of p and pr. 

3. SOLUTIONS OF THE FIELD EQUATIONS 

Model I 

We assume p ( r ) = a r " / R " ,  where a, R, and n are constants and 
a > 0 ,  R>0.  

For n = 0, we have uniform-density spheres. The mass function becomes 

a r  n+3 

m(r)  = (3.1) 
2(n + 3)R" 

On substitution of this value of re(r), equation (2.11) gives 

e-Z=[1 at"+2 ] 
(n + 3)R"_I (3.2) 

Using equation (3.1) in equation (2.12), we get 

dv  _ rpr + ar" + l / (n  + 3)R" 
(3.3) 

dr 1 - ar  ~+ l / (n  + 3)R" 

Now by choosing suitable values of Pr we try to obtain the solution of 
equation (3.3). 
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We choose 

pr=C[1 ~r. ]2 
(n  + 3 ) R ' ; J  

where C is a constant. 
Then from equation (3.3) we have 

e~=Ko[ 1 a r . +  2 ]-,/(.+2) [ C r 2  (n- i~  3 ~  -j e x p [  
a C t " + 4  ] 

(n + 3)-~n + 4)g';J 
(3.4) 

where K0 is an integration constant. 
By use of the values ofpr and re(r), equation (2.13) gives 

a2r2("+l) [ a r " + 2  f '  ( 3 n + 4 ) a C r " + 2  
p •  3 ) R 2 "  1 ( n +  3 ) R ; J  4(n+3)R" 

n+2 

•  , . .+2  ]3 
( . - Z 3 ~ j  

~r  n+ 2 -~ C2/.2 

(n--+-~" J + -  4 

(3.5) 

Model II 

We assume the energy density to be given by (Mehra, 1966; Knutsen, 
1990) 

p=p0(1-~2)  (3.6) 

where Po is the energy density at the center of a star with radius R. 
Then from equations (2.10) and (3.6), we have 

Equation (2.11) leads to 

, 'or ' (1_  / m ( r )  = - g -  5 R 2 ]  

e-X=II-~-~(lk -~R-i}j 3r2~] 

(3.7) 

( 3 . 8 )  
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with m(r) given by (3.7) and the choice for p,, if we assume that 

5R2]J\ R 1 '  n___ 1 (3.9) 

then equation (2.12) gives 

e~=K[I--~(1- 3r2~l-'/45R2]j 
• po_ (P_g 4po)"2] ""~176 

L fR 2 3 \ 9  ~--i] j 

x [- 5-~ 3 

C R  2 [ rZ~ "+l] 

where K is an integration constant. 
Further using the value of pr and the mass 

(2.13), we obtain 

 f)(1 P• --~} \ 20 

+[C(I r2~" C 2r2~ r2~ 2n .Cr2 (I r2 In- II 

3r 2 \-I 2r2 x[l--~-( l-jr5R2/j]|+p~ 5R2J 

- ~-~j_] ( 3 .  l l) 

function in equation 

4. PHYSICAL PROPERTIES OF THE SOLUTION 

The solutions can be matched at the boundary r=R with the 
Schwarschild exterior solution 

ds;= 1 _2___ drE+r 2 dO2+r 2 sin 2 0 d~ 2 -  1 - dt 2 (4.1) 
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M o d e l  I 

Continuity of gl i implies that 

2M a 

g (n + 3) 

This is satisfied when (n + 3) > 0. 
The continuity of g~ implies that 

Singh et  al. 

L R 2 (4.2) 

R (n -~ 3)--~n + 4)JJ (4.3) 

Thus, constants a, C, and Ko depend on the mass M and radius R of the 
fluid sphere. 

At the center of the fluid sphere, we have 

e -z = 1, p = 0, e v = K0, pr =p• = C (4.4) 

Thus, we can choose Ko = 1. 
From equation (4.2), we have 

and so C can be computed from equation (4.3) when R > 2M. 

M o d e l  II 

In the second model, at the center of the fluid sphere, we have 

p = po, e -x = 1, e v = const, pr =p• = Ci (4.6) 

As p~>0, G > 0 .  
The continuity of gll implies that 

2 M _  2poR 2 (4.7) 

R 15 

The continuity of g44 implies that 

2 R 2 r / 2 4 \I/2-1(5P~176 
po  :/p0 /p0 / 

1 J 

xexp[  CIR2 ] 
2(--~ 1)'J (4.8) 
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Therefore,  the constants  can be expressed in terms o f  M,  R, and  Po. Also, 
at the b o u n d a r y  o f  the sphere pr = p .  = 0. Therefore,  the fluid sphere has 
equal radial and tangential  pressures at  the center r = 0 (the c o m m o n  value 
being G ) .  The pressures go on decreasing cont inuously  and finally they 
become zero at the b o u n d a r y  r =  R o f  the sphere. The constants  should be 
chosen to ensure this condition.  

The surface redshift z = ( 1 - 2 M / R )  -~ /2 -  1 can be calculated easily. In 
addit ion,  the condi t ions  

dpr <_l, dP• < l ,  p r < p ,  0 < r •  
do ap 

put  fur ther  condit ions on the constants.  
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